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Consideration is given to a mathematical model of the rheology of swelling systems, the basis for which is
provided by generalization of the filtration-consolidation theory to the case where the mass of the solid phase
of a porous skeleton changes due to the flow of a fluid during the swelling and shrinkage processes under
the action of osmotic pressure. The problem on swelling and shrinkage of a clay layer has been formulated
and solved. The features of the model, which are important for explanation of certain characteristic features
of the processes in swelling systems, have been investigated based on an analysis of the solution. It has been
shown that the solutions obtained are in good agreement with experimental results.

Introduction. Swelling systems are traditionally an object of close attention and investigation in physico-
chemical mechanics, biomechanics and biophysics, polymer physics, hydrogeology, and a number of other branches.
Examples of swelling systems in nature are provided by soils, clay rocks, certain polymers, and polymolecular systems
of living organisms. The mechanics of such systems is usually constructed based on empirical rheological models say-
ing little about the physical nature of swelling in them. There is a necessity of combining purely mechanical concepts
of the processes in swelling systems with the physicochemical properties (common to both inorganic and organic ob-
jects) of such systems. In our opinion, osmotic pressure in swelling systems, which is a motive force for the process
of swelling, can be a property of this kind. This pressure induces flow of a fluid to (from) a solid matrix and causes
the additional stresses finally arresting the swelling to appear. Therefore, the swelling matrix may be considered as a
porous medium with a swelling skeleton. As a model describing the mechanics of such systems, we may select the
thoroughly studied filtration-consolidation model [1], but the latter must be generalized to the case of the porous skele-
ton of variable mass. Swelling thermodynamics has been presented in a number of monographs, of which we use [2].

Physicochemical Mechanics of Swelling Systems. We write the basic mechanical equations for swelling sys-
tems. For the mass of the liquid phase and the mass of the skeleton material, the balance equations have the form

∂mρf

∂t
 + div (mρfVf) + j = 0 ,   ρf = const , (1)

∂ (1 − m) ρs

∂t
 + div [(1 − m) ρsVs] − j = 0 ,   ρs ≠ const . (2)

The mass of the representative element of volume V0 of the porous medium will be written as

Ms = ρs
0
Vs

0
 + ρf 


(1 − m) V0 − Vs

0
 ,   Vs

0
 ,   ρs

0
 = const . (3)

From expression (3), for the skeleton-material density we have

ρs = 
Ms

(1 − m) V0
 = 

εVs
0

(1 − m) V0
 + ρf ,   ε = ρs

0
 − ρf . (4)
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Dividing Eqs. (1) and (2) by ρf and adding the results together, with account for (4) we obtain

div 
κVs

V0
 + div q + div Vs + 

∂
∂t

 




κ
V0




 = 0 . (5)

As a result of determination of the shrinkage dV0
 ⁄ V0 = dϑ and introduction of the notation εVs

 0 ⁄ ρf = κ and q =
m(Vf − Vs), Eq. (5) is easily transformed to the form

div q + κae
−ϑ

 (− Vs∇ϑ + div Vs) + div Vs − aκe
−ϑ

 
∂ϑ
∂t

 = 0 ,   V0 = V0
(0)

e
ϑ

 ,   a = 1 ⁄ V0
(0)

 . (6)

It is clear that Vs∇ϑ → 0 as a second-order infinitesimal; then (6) yields

div q + div Vs + κae
−ϑ

 



div Vs − 

∂ϑ
∂t




 = 0 . (7)

Determining div Vs = ∂ϑ ⁄ ∂t, from (7) we finally obtain

div q + 
∂ϑ
∂t

 = 0 . (8)

We write the momentum-balance equation in the form of the equilibrium equation

Gij = (1 − m) σij
s
 − mpδij = (1 − m) (σij

s
 + pδij) − pδij ,

which, after the introduction of the notation (1 − m)(σij
s  + pδij) = σij

f , will take a form traditional for the filtration-con-
solidation theory:

Gij = σij
f
 − pδij . (9)

Let us turn to the energy-balance equation. We write the first and second laws of thermodynamics:

dUs = δQ
(e)

 + δA
(i)

TdSs = δQ
(e)

 + δQ ′ ,   δQ ′ ≥ 0










 ⇒ δA

(i)
 = dUs − δQ

(e)
 = dFs + δQ ′ . (10)

In accordance with the living-force theorem, for the case where the action of mass forces is absent we have

δA
(i)

dt
 = ∫ 

Vs

σij
s
 
∂Ui

∂xj
 dV = ∫ 

Vs

∂
∂xj

 (Uiσij
s ) dV = ∫ 

Σs

σij
s
njUidS = ∫ 

Ss

e

σij
s
njUidS + ∫ 

Σs−f

 − pniUidS =

=  ∫ 
Ss

e

τij
s
njUidS + ∫ 

Ss

e

(− σf
 + p) niUidS + ∫ 

Σs

− pniUidS ,   σf
 = − 

1
3

 σii
f
 . (11)

Passage to the values averaged over the representative volume in (11) yields

δA
(i)

dt
 = ∫ 
∂V0

(1 − m) sτijt sUit njdS0 + ∫ 
∂V0

(1 − m) s− σ + pt sUit nidS0 + ∫ 
Σs

− pUinidS . (12)

We introduce the definition of the effective-stress tensor
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σij
f
 = Tij − σfδij = (1 − m) (sτij

s
t − sσ − pt δij)

and write (12) in the form

δA
(i)

dt
 = ∫ 

V0

∂
∂xj

 (σij
f
 sUit) dV + ∫ 

Σs

− pUndS = V0σij
f
eij + ∫ 

Σs

− pUndS , (13)

where

 ∫ 
Σs

− pUndS = − p ∫ 
Σs

UndS = − pV
.

s = − p 
∂
∂t

 [(1 − m) V0] = pV0m
.
 − p (1 − m) V

.
0 .

Taking into account that V
.

0 = V0ϑ
.
, we obtain

 ∫ 
Σs

− pUndS = V0pm
.
 − p (1 − m) V0ϑ

.
 . (14)

Next we consider the situation where the skeleton proper manifests its elastic properties. This holds true of small
strains, as the experiment shows, but fails for large strains. In this case, from (13) and (14), we have

δQ ′

dt
 = 0 ⇒ 

1
V0

 F
.

s = σij
f
eij + pm

.
 − p (1 − m) ϑ

.
 . (15)

Since the free energy is, generally speaking, the function Fs = Fs (J2 ′, ϑ, m), we have

F
.

s = 2 
∂F

∂J2
 ′
 εij

 ′eij
 ′ + 

∂F

∂ϑ
 ϑ
.
 + 

∂F

∂m
 m
.
 . (16)

Expressions (15) and (16) yield that

− p (1 − m) + σf
 = 

∂F

∂ϑ
 ,   Tij = 2 

∂F

∂J2
 ′
 εij

 ′ ,   
∂F

∂m
 = p .

Setting F = 
λ
2

 ϑ2 + µJ2
 ′ − νϑ √J2 ′  in accordance with [3] and assuming that m << 1 ] m C const, we finally obtain

− [p (1 − m) − σf
] = λϑ − ν √J2

 ′  ,   Tij = (2µ − νϑ ⁄ √J2
 ′ ) εij

 ′ . (17)

Equations (17) play the role of rheological relations. It is noteworthy that the first equation of (17) together with (9)
enable us to explain the appearance of abnormally high pressures of the fluid in the bed with a swelling skeleton [4].

Swelling Dynamics. Let us consider the process of swelling in greater detail. In discussions, we will rely on
the concept (developed by one author in [5]) of an osmotic cell, in accordance with which the osmotic pressure is
found, under equilibrium conditions, from the equality of the chemical ionic potentials of the solution within the solid
skeleton and the solution in transport pores:

µk = µ
__

k ,   k = 1, 2 . (18)

Selecting as an example for calculation a 1 − 1 electrolyte (the cations and anions have a charge of 1 in the units of
elementary charge of the corresponding sign) and using the standard representation for the form of chemical potential,
we obtain
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µk = µk
0
 (p, T) + RT ln Ck + ezkΦ ,   zk = % 1 :   C1C2 = C

2
 = C

__
1C
__

2 . (19)

The last equation in (19) represents the condition of Donnan equilibrium [2]. However, the system of equations (19)
is open. To close it we use the condition of electroneutrality of the solid skeleton phase–pore solution system:

(C
__

1 − C
__

2) [(1 − m) V0 − Vs] = e ,   e′ = e ⁄ [(1 − m) V0 − Vs] . (20)

Physically Eq. (20) means that the solid skeleton particles carry an excess (negative for the sake of definiteness) elec-
tric charge. This charge is compensated for with the pore-solution cations, so we have an excess of the cations as
compared to the pore-solution anions, which causes the osmotic forces to appear. The entire scenario described is true
of such swelling systems as clays and of some others. The solution of Eqs. (19) with account for (20) is as follows:

C
__

1 = 
e′
2

 + √e′24
 + C

2
 ,   C

__
2 = − 

e′
2

 + √e′24
 + C

2
 . (21)

Then, from (21), for the osmotic pressure we have the dependence 

π = 
RT
2

 √e′2 + 4C2  − 2C , (22)

which is transformed as follows when C = 0:

π = 
1
2

 RTe′ = 
1
2

 
RTe

(1 − m) V0 − Vs
 . (23)

The skeleton particles are affected by two forces — the osmotic pressure in the pore solution and the effec-
tive stress preventing swelling. It is clear that their difference is the resultant force leading to either swelling or shrink-
age. Thus, the equation of swelling is rationally written in the form

∂
∂t

 [Vs (ρs − ρw) + (1 − m) ρwV0] = α [(1 − m) π − σf
] . (24)

Dependence (24) describes the dynamics of change in the skeleton mass due to the inflow (forcing through) of water
during the swelling (shrinkage). Equations (23) and (24) close the general system of mechanical equations for the
process of swelling (shrinkage).

Rheological Properties of Swelling Systems. We investigate the rheology of swelling systems using the one-
dimensional problem of swelling and shrinkage of a layer under the action of a constant load applied to it as an ex-
ample. Formulation of the problem follows from Eqs. (8), (9), (17), (20), (23), and (24) supplemented with Darcy’s
law for the filtration rate and with the determination of swelling and shrinkage:

Γ = σf
 + p ,  Γ = const , (25)

(1 − m) p + σf
 = − ϕ (ϑ) , (26)

ϑ
.
 + 

∂q

∂z
 = 0 , (27)

q = − 


k
η



 
∂p

∂z
 ,   k = k0 + Bm ,   k0, B = const , (28)
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V0 = V0
(0)

 exp ϑ , (29)

∂
∂t

 Vs (ρs − ρw) + ρw (1 − m) V0

 = α (1 − m) π − σf

 , (30)

π = 
0.5eRT

(1 − m) V0 − Vs
 . (31)

Thus, the sought functions of the system of equations (25)–(31) are σf, p, ϑ, m, k, q, V0, and π; the constants of the
model are Γ, η, k0, V0

(0), ρw, ρs, e, α, R, and T. The boundary conditions have the form

pz=z0
 = Γ ,   pz=0 = p0 (32)

or

∂p

∂z



z=z0

 = 0 ,   pz=0 = p0 ; (33)

the initial condition is ϑ(z, 0) = 0.
Generally speaking, the form of the rheological relation is unknown, since the assumption of the elastic char-

acter of the reaction to the load applied holds true only of small strains of the medium. Therefore, we assume that the
transport porosity of the medium is low, so we may assume that m = 0 (this holds true of many cases, for example,
of such natural swelling systems as clays). Since one variable in system (25)–(31) has been determined, one equation
becomes extraneous. Let Eq. (26) be such an equation. Furthermore, we note that the dependence of the filtration rate
on the pressure gradient (28) is simplified. Next, we solve the problem numerically. In both problems (for boundary
conditions of the first and second kind (32) and (33) respectively), we have used an explicit difference scheme. In the
second problem (i.e., for boundary condition of the second kind (33) at entry into the layer), we have used the march-
ing method to find the pressure profile. The calculation results are presented in Fig. 1. 

Analysis of the Results. Since there are no experimental data on the pressure and shrinkage distribution in
the layer strained (these data must be determined in rheological experiments in parallel), the values of the model’s pa-
rameters were selected for reasons of convenience of calculations; therefore, the conclusions of the section are qualita-
tive in character. Variation of the values of the parameters did not change the form of the dependences obtained. The
calculations have confirmed the expectations of physical character placed on the model. Thus, in our opinion, of great
interest is the pressure profile for the case where boundary condition (32) is used. It is seen that a stationary zone in

Fig. 1. Pressure profile in the layer (stationary stage): 1 and 2) conditions
of the first and second kind at the right-hand boundary of the layer. p,
kPa; z, cm.
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which flow is absent is formed in the central part of the layer. A flow arrives at this zone on the right and is removed
on the left. The corresponding shrinkage distribution is shown in Fig. 2. It is seen that the zone of entry of the flow
corresponds to the swelling zone (positive ϑ values), whereas the zone of removal of the flow (negative ϑ) corre-
sponds to the shrinkage zone, so that the strain turns out to be nonuniform over the profile. It is of interest that the
plots of shrinkage coincide for the two problems. The fact is that for the second case (condition (33)) water begins to
be forced out from the layer. Whereas it has the plane from which to flow out at the left-hand boundary and a shrink-
age zone is formed, at the right-hand boundary, conversely, water has no place to flow out and a swelling zone is
formed. The plots of the average-over-the layer rate of shrinkage as a function of the load applied coincide for both
cases, too (Fig. 3). It is seen that the character of the resulting curve corresponds to the Bingham rheology, which
seems quite probable for swelling systems of the clay type [6]. It is noteworthy that the value of the limiting load on
the layer, which physically ensures the absence of swelling of the entire layer, is linearly dependent on the value of
the exchange capacitance e and the parameter α and is virtually independent of the permeability of the medium.

Conclusions. Problems including, in one form or another, the use of rheological models of swelling media
such as clays or clay rocks are quite frequent in technology or engineering geology. As a rule, one immediately lays
one hypothesis on the rheology of a medium, for example, the Bingham rheology, or another into such models. It was
important for us to propose such a model of a medium that would rely on the known experimental facts referring to
the properties of the medium (for example, the presence of osmotic pressure, leading to swelling, in the system) and
would use a priori no assumptions on the rheology of the medium. Such a model was developed by combining the
filtration-consolidation theory and the osmotic-cell model. Based on it, we have solved the simplest problem on shrink-
age of a swelling layer under load and have shown that the model makes it possible to correctly describe the rheology
of clays and clay rocks observed in experiments.

This work was carried out with support from the International Scientific-Technical Center (project No. 2364).

NOTATION

A(i), work of internal surface forces; C, concentration of the electrolyte in transport pores; C1 and C2, concen-
tration of the cations and anions in the solution; dS, area element, over which integration is carried out; dV, volume
element; e, exchange capacitance of clay; eij, strain-rate tensor; F, free energy of the body with microdistortions; Fs,
free energy of the solid skeleton phase; Gij, external-load tensor; j, exchange flow between the skeleton and the trans-
port pores; J2

 ′, second invariant of the stress-tensor deviator; k, permeability of the medium; Ms, solid-phase mass; m,
free (transport) porosity; nij, normal vector to the corresponding surface; q, filtration rate; q, modulus of q; Q(e), ex-
ternal heat; Q ′, uncompensated heat; p, pressure in the liquid phase; R, universal gas constant; T, temperature; t, time;
Ss, solid-phase entropy; Ss

e, free surface of solid-phase particles; Tij, deviator of the effective-stress tensor; Us, internal
energy of the solid phase; Ui, components of the vector of the displacement velocity of skeleton particles; V0, repre-
sentative volume; V0

(0), initial value of the representative volume of the medium; ∂V0, boundary of the representative
volume; Vs, solid-phase volume; Vf, velocity of the fluid in transport pores; Vs, solid-phase velocity; x, coordinate

Fig. 2. Shrinkage profile in the layer. z, cm.

Fig. 3. Average shrinkage rate vs. applied load. Γ, kPa.
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axis; z, vertical axis; z0, clay-layer thickness; zk, charge in the units of elementary charge of the corresponding ion
(z1, of the cation, z2, of the anion); α, mass-exchange constant; Γ, modulus of external load; δij, Kronecker delta sym-
bol; εij, strain tensor; η, viscosity of water; θ, shrinkage; θ

.
, shrinkage rate; λ, µ, and ν, elastic constants; µk, chemical

ionic potential in the solution; π, osmotic pressure; ρf, density of the fluid; ρs, density of the solid phase; ρw, density
of water; σij

f , effective-stress tensor; σf, trace of the effective-stress tensor; σij
s , skeleton’s true-stress tensor; σ, trace of

the skeleton’s true-stress tensor; Σs, total solid-phase surface; Σs–f, fluid-skeleton contact surface; τij
s , deviator of σij

s ;
Φ, electric potential. Subscripts and superscripts: 0, initial state; e, external part; (e), external heat; f, liquid phase; i
and j, projections on the coordinate axis; (i), internal surface forces; k, corresponding ion of the solution (k = 1 and
2); n, normal component of the vector; s, solid phase (porous skeleton); w, water; ⋅, partial time derivative; ′, deviator
of the corresponding tensor, except for Q ′ (uncompensated heat); 

_
 , parameters belong to the pore solution, i.e., the

solution as part of the medium’s skeleton; 1, cation; 2, anion.
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